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Abstract

Chemical communication among social insects is often studied with chromatographic methods. The data generated in such

studies may be complex and require pattern recognition techniques for interpretation. Presently, we are analyzing gas

chromatographic (GC) profiles of hydrocarbon extracts obtained from the cuticle and postpharyngeal gland (PPG) of 400

Cataglyphis niger ants using a genetic algorithm (GA) for pattern recognition analysis to identify the factors influencing colony

odor. The pattern recognition GA identifies features (i.e., chromatographic peaks) whose principal component plots show

clustering of the samples on the basis of class. Because the largest principal components capture the bulk of the variance in the data,

the peaks chosen by the GA primarily convey information about differences between the classes in a data set. As it trains, the

pattern recognition GA focuses on those classes and/or samples that are difficult to classify by boosting their class and sample

weights. Samples or classes that consistently classify correctly are not as heavily weighted as samples or classes that are difficult to

classify. Over time, the algorithm learns its parameters in a manner similar to a neural network. The proposed algorithm integrates

aspects of artificial intelligence and evolutionary computations to yield a ‘‘smart’’ one-pass procedure for feature selection and

pattern recognition. Utilizing the pattern recognition GA, two specific questions were addressed in this study: (1) Does the overall

hydrocarbon profile of the colony change with time? (2) Does the queen influence the hydrocarbon pattern of the colony?
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1. Introduction

Nestmate recognition is defined as the ability of a

worker ant to discriminate fellow nestmates from alien

conspecific workers. Studies pertaining to nestmate

recognition have focused on the nature of the recog-

nition cues used and the mode by which colony odor

is obtained. Correlative [1] and direct evidence exists

to support a role for cuticular hydrocarbons as recog-

nition cues [2,3]. However, the discovery that cutic-

ular hydrocarbon composition is similar to that of the

postpharyngeal gland (PPG) has focused research on
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the role of this gland in nestmate recognition [4]. It

has been shown that PPG extracts can modify aggres-

sive behavior in two phylogenetically remote species

of ants [4,5]. Furthermore, the PPG can act as a

‘‘gestalt organ’’ which enables the admixing and rapid

integration of odors from various sources [6,7]. These

studies as well as others provide empirical evidence

supporting a ‘‘gestalt model’’ for the creation and

acquisition of a general colony odor [8].

Earlier studies have focused on the role of both the

cuticular and PPG hydrocarbons in nestmate recog-

nition for Cataglyphis niger, a highly evolved social

insect. In this study, the influence of time and the

impact of the queen on the hydrocarbon profiles of C.

niger worker ants have been investigated. Capillary

column gas chromatography was used to analyze PPG

and cuticular hydrocarbon soaks obtained from 400 C.

niger worker ants. A genetic algorithm (GA) for

pattern recognition analysis was used to analyze the

gas chromatographic (GC) data. The pattern recogni-

tion GAwas used as a data microscope to sort, probe,

and to look for hidden relationships in the GC data.

The focus of this paper is on the analytical method-

ology used to solve this rather interesting classifica-

tion problem, with particular emphasis on the pattern

recognition techniques used to identify the various

fingerprint patterns within the GC data.

2. Experimental

Two polygynous colonies of C. niger ants were

collected in Tel Aviv, Israel. Colony A had 11 queens

and colony B had 18 queens. In the laboratory, these

two field colonies were transferred to artificial nests

and reared under controlled conditions (diet, temper-

ature, lighting).

Three monogynous (one queen) fragments and one

queenless group (daughter colonies) were created

from each of two polygynous laboratory colonies

(mother colonies). Each mother colony consisted of

3000 ants and each daughter colony consisted of 250

Fig. 1. Gas chromatogram of PPG secretion from a C. niger worker. Numbered peaks correspond to mono- and dimethyl branched

hydrocarbons. See Ref. [9] for representative structures.

B.K. Lavine et al. / Chemometrics and Intelligent Laboratory Systems 66 (2003) 51–6252



ants. The mother and daughter colonies were sepa-

rated from each other for 3 months. Before separation,

a random sample of 10 ants was taken from each

mother colony. After separation, 10 ants were col-

lected from each mother and one daughter colony

once a month. All other daughter nests were sampled

after 3 months of separation.

Hydrocarbons were extracted from individual ants

by immersing the dissected PPG or the isolated

thorax, which is representative of the cuticle, in 100

Al of pentane. The thorax was extracted for a time

period of only 5 min to avoid contamination from

internal compounds. Eicosane (750 ng) was added to

the wash as an internal standard. Samples were

analyzed by a Varian 3700 Gas Chromatograph (Var-

ian Analytical Systems, Walnut Creek, CA) equipped

with a split/splitless injector, a flame ionization detec-

tor, a Leap Technologies autosampler, and a fused

silica DB-1 capillary column (J&W Scientific, Fol-

som, CA) that is 30 m in length, 0.32 mm in internal

diameter, and with a film thickness of 0.25 mm.

Hydrogen was used as the carrier gas and nitrogen

was the make-up gas. The column was temperature

programmed from 120 to 285 jC at 5 jC/min. Fig. 1

shows a representative gas chromatographic (GC)

profile of a PPG secretion of a C. niger worker.

Twenty-three of the 72 peaks in the gas chromatogram

could be accurately and reliably quantified. These

peaks were previously identified by gas chromatog-

raphy/mass spectrometry [9]. Some peaks were com-

posed of two or more inseparable compounds.

3. Genetic algorithm for pattern recognition

analysis

For pattern recognition analysis, each gas chroma-

togram was initially represented as a 23-dimensional

data vector, x=(x1, x2, x3. . . xj. . ., x23), where xj is the
area of the jth peak. The gas chromatograms were

peak matched using the integration reports and

Kovat’s indices. Each data vector was normalized to

constant sum using the total integrated peak area. A

genetic algorithm (GA) for pattern recognition analy-

sis [10–14] was used to analyze the GC data. The

pattern recognition GA identifies feature sets (i.e.,

chromatographic peaks) whose principal component

plots show clustering of the samples on the basis of

class. Because the largest principal components cap-

ture the bulk of the variance in the data, the peaks

chosen by the GA primarily convey information about

differences between the classes in the data. As the

pattern recognition GA trains, the algorithm focuses

on those classes and/or samples that are difficult to

classify by boosting their class and sample weights.

Samples or classes that consistently classify correctly

are not as heavily weighted as samples or classes that

are difficult to classify. Over time, the algorithm

learns its parameters in a manner similar to a neural

network. The proposed algorithm integrates aspects of

artificial intelligence and evolutionary computations

to yield a ‘‘smart’’ one-pass procedure for feature

selection and pattern recognition.

The GA builds a population of binary strings called

chromosomes, each of which represents a feature

subset. For a GC peak to be included in a feature

subset, the corresponding bit in the string must be set

at 1. The length of each binary string is equal to the

number of GC peaks in the data set. The number of

chromosomes in the initial population, /, is usually

set at 100. The chromosomes comprising the initial

population are generated at random to minimize

potential bias.

During each generation, the strings are decoded,

yielding the actual set of features that are sent to a

fitness function for evaluation. Each string is assigned

a score by the fitness function, which is a measure of

the quality of the proposed solution for the pattern

recognition problem. Chromosomes with a higher

score have a higher probability of being selected for

crossover. The power of the GA arises from crossover,

which causes a structured yet randomized exchange of

information between solutions, with the expectation

that good solutions can generate even better ones.

Additional variability in the population is achieved

through the mutation operator, which flips the state of

single bits based on a certain probability supplied by

the user. Mutation allows the GA to explore other

regions of the solution space. If the GA finds a better

feature subset through mutation, the optimization will

continue in a new direction.

The selection operator used by the pattern recog-

nition GA orders the population of strings, i.e., the

feature subsets, from best to worst fitness while

simultaneously generating a copy of the same pop-

ulation and randomizing the order of the strings in this
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copy with respect to fitness. A fraction of the pop-

ulation is then selected as per the selection pressure,

which is usually set at 0.5. The top half of the ordered

population is mated with the top half of the random

population, guaranteeing that the best 50% are

selected for reproduction, while ensuring that every

string in the randomized copy has a uniform chance of

being selected due to the randomized selection crite-

rion imposed on the strings in this population.

To facilitate the tracking and scoring of the feature

subsets, i.e., the principal component plots, class and

sample weights, which are integral parts of the fitness

function, are computed (see Eqs. (1) and (2), where

CW(c) is the weight of class c and c varies from 1 to

the total number of classes in the data set, and SW(s)

is the weight of sample s in class c). The class weights

sum to 100, whereas the sample weights in a class

sum to a value equal to the corresponding class

weight.

CWðcÞ ¼ 100
CWðcÞX

c

CWðcÞ
ð1Þ

SWðsÞ ¼ CWðcÞ SWðsÞX

sac

SWðsÞ
ð2Þ

FðdÞ ¼
X

c

X

sac

1

Kc

� SHCðsÞ � SWðsÞ ð3Þ

Each principal component plot generated for each

feature subset is scored using the K-nearest neighbor

(K-NN) classification algorithm [15]. For a given data

point, Euclidean distances are computed between it

and every other point in the principal component

plot. These distances are arranged from smallest to

largest. A poll is then taken of the point’s K-nearest

neighbors. For the most rigorous classification, K

equals the number of samples in the class to which

the point belongs. (K, which is assigned by the user,

usually varies with the class.) The number of nearest

neighbors with the same class label as the sample

point in question, the so-called sample hit count

(SHC), is computed (0V SHC(s)VKc), where Kc is

the number of nearest neighbors to be calculated for

each sample in class c. It then becomes a simple

matter to score a principal component plot (see Eq.

(3), where F(d) is the fitness of the feature set being

scored, SHC(s) is the number of nearest samples with

the same class label as sample s, and SW(s) is the

weight of sample s).

To better understand the scoring of the principal

component plots, consider the hypothetical example

of a data set with two classes having been initially

assigned equal weights by the pattern recognition GA.

Class 1 has 10 samples, and class 2 has 20 samples.

Therefore, K1 is 10 and K2 is 20. At generation 0 (no

children have yet been created), the samples in a given

class will have the same weight. Therefore, each

sample in class 1 has a sample weight of 5, whereas

each sample in class 2 has a weight of 2.5. If sample

3, which is in class 1, has as its nearest neighbors

7 class 1 samples, then SHC/K1 = 0.7 and (SHC/

K1)� SW(3) = 0.7� 5 or 3.5. By summing (SHC/

Kc)� SW(s) for each sample point in the plot, the

principal component map of the feature subset is

scored.

The fitness function of the GA is able to focus on

samples and classes that are difficult to classify by

boosting their weights over successive generations. In

order to boost, it is necessary to first compute the

sample hit rate (SHR), which is the mean value of

SHC/Kc over all feature subsets (/) produced in a

particular generation (see Eq. (4)) (/ is usually set at

100). SHR, which is calculated over the entire pop-

ulation of solutions in a particular generation, pro-

vides consistent information about the difficulty in

classifying a particular sample.

SHRðsÞ ¼ 1

/

X/

i¼1

SHCiðsÞ
K

ð4Þ

Boosting is then performed in two steps. First, the

class hit rate (i.e., average sample hit rate for all

samples in a class) is computed (see Eq. (5), where

CHRg(c) is the class hit rate for class c during

generation g, AVG is the average, and SHRg(s) is

the sample hit rate for each sample in class c during

generation g). CHR, like SHR, provides consistent

information about the difficulty in classifying a par-

ticular sample type. Classes and samples with low hit

rates will be weighted more heavily, i.e., they will
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have more influence in the fitness calculation, than

classes or samples that score well.

CHRgðcÞ ¼ AVGðSHRgðsÞ : bsacÞ ð5Þ

Second, class and sample weights are adjusted

during each generation using a perceptron (see Eqs.

(6) and (7), where CWg + 1(c) is the class weight for c

during the current generation g + 1, CWg(c) is the

class weight for c during the previous generation g, P

is the momentum, CHRg(c) is the class hit rate for c

during generation g, SW(s)g + 1 is the sample weight

for s during generation g + 1, SW(s)g is the sample

weight for s during generation g, and SHRg(s) is the

sample hit rate for s during generation g). The user

must set the momentum, P.

CWgþ1ðcÞ ¼ CWgðcÞ þ Pð1� CHRgðcÞÞ ð6Þ

SWgþ1ðsÞ ¼ SWgðsÞ þ Pð1� SHRgðsÞÞ ð7Þ

During each generation, class and sample weights

are updated using the class and sample hit rates from

the previous generation. After a certain number of

generations, the class weights become fixed. Eq. (6) is

turned off, P is halved, and sample weights are

renormalized using Eq. (2). The GA then focuses on

the troublesome samples (see Eq. (7)).

Boosting is crucial for the successful operation of

the GA because it allows the values of the class and

sample weights to change, thereby modifying the

criteria for a good score, which can help to minimize

the problem of convergence to a local optimum.

Hence, the fitness landscape of the pattern recognition

GA changes as the population evolves towards a

solution.

4. Results and discussion

Two specific questions (i.e., hypotheses) were

addressed in this study: (1) Does the overall hydro-

carbon pattern of the colony change with time? (2) Is

the queen influencing the hydrocarbon pattern of the

colony? The hydrocarbon profiles, PPG and cuticle of

both colonies were affected to the same degree by

time and queen influence. Therefore, to more clearly

visualize the data, only the results for the postphar-

yngeal gland hydrocarbons of colony B and its sub-

units will be discussed.

Initially, SIMCA pattern recognition was used to

analyze the data. However, SIMCA was unable to

identify trends in the data that could validate either

hypothesis. The low classification success rates

achieved by SIMCA for these data are attributed to

the large amount of irrelevant information present in

the GC data. Therefore, a new approach to analyze the

data was taken in this study. The new approach

requires a scientist to combine empirical data with

careful analysis, prior knowledge and reasoning, and

is more rigorous in some respects than simply for-

mulating a hypothesis, i.e., model of the data, from a

set of observations since a variety of techniques can

be used to validate the so-called model, with predic-

tive success being the most powerful. This new

approach attempts to explore the implications of the

data so that hypotheses are developed with a greater

awareness of reality. It does not involve a thought

ritual; rather it is a method that searches for significant

structure in multivariate data. Mathematics is not used

for modeling per se but more for discovery.

The first step was to apply principal component

analysis to the data. Principal component analysis can

reduce the dimensionality of the data while simulta-

neously preserving the information present in the data.

Dimensionality reduction is possible using principal

component analysis because in chromatographic data

sets the measurement variables (areas of the selected

GC peaks) are highly correlated. High collinearity

between measurement variables is a strong indication

that a new set of basis vectors can be found that are

better at conveying the information present in the data

than axes defined by the original measurement vari-

ables. This new basis set, which is linked to variation

in the data, can be used to develop a new coordinate

system for displaying the data. The first principal

component is formed by determining the direction

of largest variation in the data and modeling it by a

line, which passes through the center of the data. The

second principal component defines the direction of

next largest variation; it passes through the center of

the data and is orthogonal to the largest principal

component. The third principal component lies in the

direction of next largest variation; it passes through

the center of the data and is orthogonal to the first and
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second largest principal components, and so forth.

Each principal component is a linear combination of

the original measurement variables. Using principal

component analysis, the original measurement varia-

bles, which constitute a correlated axis system, can be

converted into an orthogonal system that removes

correlations by forcing the new axes to be independ-

ent. This requirement dramatically reduces the dimen-

sionality of the data because only a few independent

axes are necessary to describe the data. Principal

component analysis is routinely applied to high-

dimensional data to affect dimensionality reduction

and to search for structure in multivariate data.

Outliers can adversely influence the performance

of principal component analysis and other pattern

recognition techniques. Therefore, outlier analysis

was performed on each class in the data set prior to

principal component analysis using the generalized

distance test [16], which was implemented by SCOUT

[17]. Two gas chromatograms identified as outliers

were removed from the data set. These two outliers

were from the same daughter colony.

In Fig. 2, a plot of the two largest principal

components of the 23 GC peaks obtained from the

gas chromatograms for the 40 ants that belonged to a

monogynous fragment (i.e., daughter nest) of colony

B is shown. Each gas chromatogram or ant sample is

represented as a point in the principal component plot

(1 = 0-month ants, 2 = 1-month ants, 3 = 2-month ants,

and 4 = 3-month ants). The ants at 0 and 1 months (1’s

and 2’s) are well separated from each other and the

other ants in the plot. However, there is overlap

between the ants at 2 and 3 months (3’s and 4’s),

which raises questions about the validity of the

hypothesis that the overall hydrocarbon pattern of a

colony changes with time.

Fig. 2. A plot of the two largest principal components of the 23 GC peaks obtained from the gas chromatograms of the 40 ants that belonged to a

daughter nest (i.e., monogynous fragment) of colony B is shown. Each ant sample is represented as a point in the principal component map

(1 = 0-month ants, 2 = 1-month ants, 3 = 2-month ants, and 4 = 3-month ants). The ants at 0 and 1 months (1’s and 2’s) are well separated from

each other and the other ants in the plot, whereas there is overlap between the ants at 2 and 3 months (3’s and 4’s), raising questions about the

validity of the hypothesis that the overall hydrocarbon pattern of a colony changes with time.
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The pattern recognition GA was used to identify

peaks characteristic of the profile at each time period,

thereby removing irrelevant information through judi-

cious feature selection. The GA identified features by

sampling key feature subsets, scoring their principal

component plots, and tracking those samples or

classes that were most difficult to classify. The

boosting routine used this information to steer the

population to an optimal solution. After 100 gener-

ations, the pattern recognition GA identified five

standardized retention time windows, whose principal

component map (see Fig. 3) shows clustering of the

ants according to their sampling time (K set equal to

the number of samples in each class). The results of

this study indicate that PPG hydrocarbon profiles of

C. niger ants change with time, as has been reported

for some other ant species, e.g., Solenopsis invicta

[18], Leptothorax lichtensteni [19], Cataglyphis iber-

ica [20], Formica truncorum [21], and most recently

C. niger [22].

C. niger workers exchange hydrocarbon material

with other C. niger workers and the queen through

social contact and regurgitation of hydrocarbons from

the PPG. Therefore, ants in social contact are expected

to have a similar hydrocarbon profile, whereas ants

with limited social contact are not expected to influ-

ence each other as much. Because the queen is central

to the normal functioning of the colony, we assessed

whether or not she tracked the changes in worker

profiles with time or deviated from the worker pro-

files. The worker hydrocarbon profiles of one of the

queenright daughter colonies were monitored at 0

(same as polygyne mother colony before group sep-

aration), 1, 2, and 3 months. Random samples of 10

workers were sacrificed at each of these specific time

intervals, as well as the queen at 3 months. Fig. 4

shows a plot of the two largest principal components

defined by the 23 gas chromatographic peaks and the

40 C. niger workers. Each ant sample is represented

as a point in the principal component map (1 = 0-

Fig. 3. A plot of the two largest principal components of the 5 GC peaks (9, 11, 13, 17, and 19 in Fig. 1) identified by the pattern recognition GA

is shown for the 40 ants that belonged to a daughter nest (i.e., monogynous fragment) of colony B. Each ant sample is represented as a point in

the principal component map (1 = 0-month ants, 2 = 1-month ants, 3 = 2-month ants, and 4 = 3-month ants). Clustering of the ants according to

their sampling time is evident, indicating that PPG hydrocarbon profiles of C. niger ants change with time.
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month ants, 2 = 1-month ants, 3 = 2-month ants, and

4 = 3-month ants). The results for 0-month workers

were clearly separated from the other three time

periods; however, the 2- and 3-month ant samples

again were poorly separated. The queen was sampled

at the end of the third month; however, when the

queen was projected onto the map it was unclear as to

which time category she fits the best (2 month or 3

month; see Fig. 4).

The pattern recognition GA was used to uncover

features characteristic of the gas chromatographic

profiles of each group. For this study, the GA was

configured in the following manner. The number of

‘‘chromosomes’’ or binary strings in the population

was set at 50, the momentum, P, was 0.5, the mutation

rate was 0.1, and Kc was set at 10 for each class. The

maximum number of iterations was set at 100. After

100 generations, the GA identified three standardized

retention time windows whose principal component

plot showed clustering of the ant samples according to

time period (see Fig. 5). When the gas chromatogram

of the queen was projected onto the principal compo-

nent map defined by the three retention time windows

and the 40 ant samples, it was evident that the queen

profile is most similar to that of the 3-month group.

This result was expected because the queen and the

workers after 3 months should have similar profiles

due to the exchange of material between the workers

and the queen. The efficacy of the genetic algorithm

to extract pertinent information from GC data is also

demonstrated, and it shows that PPG hydrocarbons

can be used as a model system to study the passage of

materials such as semio-chemicals through an ant

colony. As for the changes that occurred in the hydro-

carbon profiles of the queen and her workers, we

could not determine if either the queen or the workers

had a greater influence in directing these changes. All

that can be concluded from the data in this experiment

Fig. 4. A plot of the two largest principal components of the 23 GC peaks obtained from the gas chromatograms of 40 C. niger ants from a

queenright daughter colony monitored over 0, 1, 2, and 3 months. Each ant sample is represented as a point in the principal component map

(1 = 0-month ants, 2 = 1-month ants, 3 = 2-month ants, and 4 = 3-month ants). Q is the gas chromatogram of the queen projected onto the

principal component map defined by the 23 gas chromatographic peaks and the 40 ant samples. The queen was sampled at the end of the third

month; however, when the queen is projected onto the map it is unclear as to which time category she should be assigned.

B.K. Lavine et al. / Chemometrics and Intelligent Laboratory Systems 66 (2003) 51–6258



is that changes in the hydrocarbon profiles of the

queen and her workers tracked each other.

To compare the effect of time and queen influence

on the PPG profiles, a subset of 30 ants from colony B

was analyzed. Ten ants from the original polygynous

colony were sampled at 0 months; 10 ants from a

queenless daughter colony were sampled at 1 month;

and 10 ants from the original polygynous colony were

sampled at 1 month. Fig. 6 shows a plot of the two

largest principal components for the 30 C. niger ants.

Again, each ant is represented as a point in the

principal component plot (1 = original polygynous

colony sampled at 0 months, 2 = queenless daughter

colony sampled at 1 month, 3 = original polygynous

colony sampled at 1 month). The ants from the

original colony at 0 months are well separated from

the other ants in the principal component plot. How-

ever, the ants that are sampled at the same time do

overlap, which makes it difficult to draw any mean-

ingful conclusions about the effect of time and queen

influence on the PPG profiles.

The pattern recognition GA was used to identify a

set of features characteristic of the source profile of

each group in the data. Fig. 7 shows a plot of the two

largest principal components for the nine standardized

retention time windows identified by the pattern

recognition GA. Clustering of the ants by class is

evident. Classes 1 and 3 share the same queen, which

suggests that differences in their hydrocarbon profiles

can be attributed to a change over time. For classes 2

and 3, the change in the hydrocarbon profiles is due

to the presence or absence of a queen, whereas

differences in the hydrocarbon profiles of classes 1

and 2 reflect a combination of these two factors (time

and queen). We also observed a similar trend for the

same queenless daughter colony sampled at 2 and 3

months, respectively. Evidently, changes in PPG

profiles of C. niger worker ants over time exceed

Fig. 5. A plot of the two largest principal components of the 3 GC peaks (8, 9, and 13 in Fig. 1) identified by the pattern recognition GA is

shown for the 40 C. niger ants from a queenright daughter colony. Each ant sample is represented as a point in the principal component map

(1 = 0-month ants, 2 = 1-month ants, 3 = 2-month ants, and 4 = 3-month ants). Q is the gas chromatogram of the queen projected onto the

principal component map defined by the 3 GC peaks and the 40 ant samples. It is evident from the map that the queen profile is most similar to

that of the 3-month-old group.
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the queen’s influence on these changes. (Queen

influence is correlated to the second principal com-

ponent in Fig. 7, whereas time influence is correlated

to the first principal component, which accounts for a

larger fraction of the total cumulative variance of the

data than the second principal component.) The queen

does not appear to play a dominant role in influencing

the hydrocarbon profiles. Time appears to be the

major factor in influencing the hydrocarbon profiles

although the separation between the 1-month-old

queenless nest and the 1-month-old queenright nest

would indicate that the queen could have some

influence on the hydrocarbon profiles. Through nor-

mal social interactions, the queen and the workers are

expected to exchange hydrocarbons with each other;

however, measurement of hydrocarbon cue exchanges

between queens and workers revealed that a queen

receives more hydrocarbons than she gives away

[22]. This, coupled with shear quantity (there are

many more workers than queens), appears to allow

workers to overpower the possible effects of the

queen.

Temporal chemical analyses indicate that hydro-

carbon profiles of colonies of C. niger ants change

over time. This was true irrespective of the number of

queens in the original colony or daughter colonies

sampled. However, divergence in hydrocarbon pro-

files did not affect nestmate recognition. Workers

separated for 3 months still considered each other as

nestmates despite measurable differences in their

hydrocarbon profiles [23]. This suggests that observed

differences in PPG profiles are still within the cue

variation that normally occurs in C. niger colonies.

Rearing conditions used in this study were con-

stant. Therefore, we can exclude the possibility that

changes in the hydrocarbon profiles over time are

attributable to either change in the physical environ-

ment and/or population changes. In all likelihood, the

Fig. 6. A plot of the two largest principal components of the 23 GC peaks obtained from the gas chromatograms of 30 C. niger ants. Each ant

sample is represented as a point in the principal component map (1 = original polygynous colony sampled at 0 month, 2 = queenless daughter

colony sampled at 1 month, 3 = original polygynous colony sampled at 1 month). The ants from the original colony at 0 month are well

separated from the other ants in the principal component plot, whereas the ants that are sampled at the same time do overlap, which makes it

difficult to draw any meaningful conclusions about the effect of time and queen influence on the PPG profiles.
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changes in hydrocarbon expression are genetically

based. Because genetic heterogeneity in polygynous

C. niger colonies is large, it is predicted that individ-

ual differences in hydrocarbon composition will create

divergent odor patterns in the individuals within a

group. Nevertheless, within-group homogeneity for

all groups was always observed. Furthermore, the

differences in the hydrocarbon profiles were not

qualitative, i.e., they did not involve disappearance

or appearance of specific compounds, but were quan-

titative changes expressed as shifts in the relative

concentration of existing compounds.

Finally, we have demonstrated the application of a

genetic algorithm to the solution of problems involv-

ing complex multivariate chromatographic data. Prin-

cipal component analysis alone generally gave poor

resolution of the classes; however, principal compo-

nent analysis when coupled to feature selection via the

application of the pattern recognition GA proved

crucial to uncovering structure in the data. We antici-

pate that this method will find application in basic

research, as well as in quality control and forensic

chemistry.
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